
Appendix A. 
 
1. Material 
 
The selected study area covers ca. 25694 km2 across Southern Sweden (Figure 1) and is characterized 
by a coniferous dominated forest types. The dominant species are Norway spruce (Picea abies (L.) 
Karst.) and Scots pine (Pinus sylvestris L.), while silver birch (Betula pendula Roth.), downy birch 
(Betula pubescens Ehrh.), and aspen (Populus tremula)) are the most common minority species. 
 

 
Figure 1 Study area covering with the yellow polygons indicating the locations of harvested forest tracts. The 

delineation of the airborne laser scanning datasets is in orange color. 

 

1.1 Field data 
 

The input field data was compiled from the harvester production files between 2018-2021 provided 
by the forest owners' association Södra. The tree lists containing detailed stem measurements, 
volume and height estimates, species, and quality. The locations were inferred from the GNSS 
positioning of the harvester at the felling cut time stamp. The forest tracts that were not fully 
covered by the remote sensing data, contained mixed logging forms such as thinnings and final cuts 
as well harvests along roads were filtered out. The final dataset for analyses contained 3826 forest 
tracts distributed as presented in Table 1. A spatial representation of the harvester data collected on 
a forest tract is shown in Figure 2.  
  



 
 

 
Figure 2 The dots represent the harvester positions registered in the production files (.hpr) overlayed on high-

resolution ESRI background aerial map. The machine coordinates are inferred to each tree to produce 
georeferenced lists containing quantitative and qualitative information on the felled trees. The dot size is 

correlated with the tree DBH, and the color indicates the tree species. 

 

1.2 Remote sensing data 
 

1.2.1 Satellite imagery  
The use of Earth Observation (EO) data, specifically multispectral satellite imagery, is a crucial tool for 
accurate, large-scale tree species mapping. The European Space Agency's Sentinel-2 mission 
(henceforth denoted S2) provides access to free and open multispectral satellite data for land 
monitoring at a high resolution in the visible, near-infrared, and shortwave spectrum, including the 
red-edge region, which is well-suited for vegetation mapping.  
 
Google Earth Engine (GEE) is a powerful solution for processing and analyzing large amounts of 
satellite imagery data from scattered regions, such as forest tracts planned for harvesting. GEE is a 
mature technology that offers access to a wide range of image catalogs and is relatively easy to use 
through high-abstraction APIs. Applications using GEE on global EO satellite data sets cover a wide 
range of scientific domains, and the platform allows for sharing of custom scripts among users. 
 
In this project, GEE is used to produce a 'cloud-free' image mosaic, using the algorithm described by 
Schmitt et al. (2019). The algorithm calculates various pixel- and image-level quality scores from a 
collection of Sentinel-2 images acquired at different time points to produce a cloud-free image 



mosaic. The algorithm differentiates between various types of clouds and attempts to remove cloud 
shadow areas using image morphology. The original algorithm was adapted to fit closely to the 
project's needs and to produce outputs that are relevant only for the analyzed forest tracts. Previous 
research indicates that using multitemporal Sentinel-2 imagery for forest inventories can result in 
moderate to low accuracy improvements. In this project, the Sentinel-2 image collection was 
ingested in 2017 during three time intervals along the vegetation season: May-June, June-August and 
September-October. 
 

 
Figure 3 Sentinel-2 mosaics for May-June 2019 for the harvest objects in the study area (red polygons) overlayed 

on high-resolution ESRI background aerial map. 

 

1.2.2 Airborne laser scanning data 
Airborne Laser Scanning (ALS) is a remote sensing technique that uses a laser scanner mounted on an 
aircraft to collect highly accurate 3D point cloud data of the earth's surface. This data can be used to 
create detailed maps of the terrain, vegetation, and other features of an area, including tree species 
composition. The national ALS data survey carried out by the Swedish mapping, cadastral, and land 
registration authority (Lantmäteriet) is an important resource for forest management and planning. It 
is conducted with an updating frequency of about seven years and covers approximately 75% of 
Sweden's area (around 350,000 km2). The on-going acquisition campaign provides a point density of 
ca. 1-2 points m2 with up to five returns per pulse classified as ground, water, low or high point or 
unclassified. In forested areas, it is assumed that the unclassified returns are the vegetation hits. The 
ALS data is downloaded from Lantmäteriet as compressed files in the .LAZ-format, which is a popular 
file format for storing and sharing large point cloud data sets (Anon 2023c). 
 
The 3D point clouds collected by the ALS survey can be used to create various products such as 
Canopy Height Models (CHM) at 1m resolution, which are digital models of the canopy height of a 
forest. These models can be used to estimate the amount of biomass, carbon sequestration and 
timber volume in the forest. 
 
The ALS measurements provided by Lantmäteriet contain up to 5 returns per pulse as well as 
calibrated intensity values. For this study, the last return, last of many and single returns (1 to 3) 



were included on the analyses. Using multiple discrete ALS returns may help describing the canopy 
structure at different heights, which can be used to estimate the volume of the tree species, and the 
number of trees in the forest. An example of an 3D ALS point cloud is shown in Figure 4. 

 
Figure 4 3D point cloud data on a forest tract visualized from different viewing angles.  

 

1.2.3 Aerial imagery  
Very high resolution (VHR) orthophotos produced from 8 bit digital aerial imagery (RGB + NIR 
channels) acquired during the leaf-on season in 2016 were obtained from Lantmäteriet Anon 
(2023d). The images 0.25m spatial resolution and are radiometrically processed to obtain 
standardized spectral signatures. Nevertheless, color unbalance may occasionally occur due to 
changing condition at different acquisition dates.        
 

1.3 Cartographic products 
The land cover thematic maps ‘Nationella Marktäckedata’ (NMD) are developed by the Swedish 

Environmental Protection Agency with an expected overall accuracy of 74% on areas > 1ha, and a 

minimum mapping unit of 0.01 ha. The NMD classes for productive forest relevant for the study area 

were Pine forests (>70% Pine), Spruce forests (>70% Spruce), mixed coniferous forest (70% mixed 

coniferous), mixed coniferous/deciduous forests (no category >70%) and deciduous forest (>70% 

Deciduous). The NMD classes were hot-encoded (0/1) to be used as numeric auxiliaries by the 

machine learning algorithms. The maps can be downloaded in raster format at 10 m spatial 

resolution via web services (Anon 2023b). 

The SLU Forest Map (SLU) product provides a wide range of forest attributes estimates in raster 

format at 12.5 x. 12.5 m spatial resolution covering large parts (but not entirely) of Sweden’s 

productive forest area Anon (2023a). The maps are produced by combining National Forest Inventory 

field data, Sentinel-2 imagery and canopy height models provided by Lantmäteriet. The attributes of 

interest in the project consists of raster maps containing tree species specific volume estimates (m3 

ha-1).  SLU maps were last updated in 2015, but new improved versions are expected to become 

available in the near future.     

  



1.4 Stem price models 
 
The monetary calculations were preformed using stem price lists for the main tree species were 
compiled by the Skogforsk specialists using industry data from 2020 that are valid for our study area. 
The prices for Spruce and Pine trees refer to round wood, while the pulpwood from coniferous trees 
and all deciduous trees were aggregated into a common price category. We resorted to this 
simplification in order to eliminate the uncertainties related to assigning tree-level quality attributes 
from the assortment lists in the harvester data to the entire stem. 
 
Table 1 Tree species specific stem price list (SEK/m3 underbark) by breast height diameter (DBH) classes 

Tree    
species 

DBH class (mm) 

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 

Spruce 270 270 270 270 331 366 399 410 420 430 435 435 435 435 440 440 445 445 445 445 445 445 

Pine 270 270 270 270 310 374 395 411 415 420 425 425 430 430 430 430 430 435 435 423 435 435 

Deciduous 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 

 
 

2. Methods and results 
 
The data processing and for the proposed approach is summarized in Figure 5. 

 

 
Figure 5 The proposed workflow for data ingestion and imputations. 

  



2.1 Microstand delineation 
 
In order to accurately map the tree species composition in a harvested area, the harvested areas are 
divided into smaller units called microstands. Microstands are defined as small plots of land that 
have similar characteristics such as tree species composition, age, and size. The delineation of 
microstands is done using image segmentation techniques applied to the Canopy Height Models 
(CHM) rasters produced from the first and first-of-many ALS returns. 
 
The harvested areas were delineated into microstands using image segmentation techniques applied 
to the CHM rasters. One common technique used is the Adaptive Simple Linear Iterative Clustering 
(SLICO) algorithm (Achanta et al 2012) applied to the normalized CHM. SLICO is an image 
segmentation algorithm that groups the image pixels into sets (or superpixels, in the image 
processing parlance) that are homogeneous with regard to size and compactness and follow 
relatively well the local image content such as image boundaries and object contours (Achanta et al 
2012, Li et al 2021). Images with complex structures can be thus efficiently represented using a 
smaller number of primitives, as each superpixel is supposed to encapsulate meaningful content.  
The harvest objects were represented as undirected acyclic graphs, with the superpixels in the nodes 
and the adjacency relationships in the edges, followed by spatial clustring of the graph nodes using 
the walktrap community finding algorithm (Pons & Latapy 2005).  
 
In order to fine-tune the microstand delineation, a genetic algorithm (Scrucca 2013, 2017) was used 
for weighting the graph edges in order to optimize a multi-criteria cost function that balances the 
sizes distribution and shapes of the delineated microstands. A genetic algorithm is a heuristic 
optimization method that is inspired by the process of natural selection. It is used to fine-tune the 
microstand delineation process by weighting the graph edges in order to optimize a multi-criteria 
cost function that balances the size distribution and shapes of the microstands. 
 
The genetic algorithm works by creating an initial population of solutions, which are represented as 
sets of weights for the graph edges. These solutions are then evaluated based on how well they meet 
the criteria defined in the cost function. The best solutions are then selected and used to create a 
new population of solutions through a process of reproduction, mutation, and crossover: 

- during reproduction, the best solutions are chosen and used to create new solutions. 
- mutation is the process of randomly changing the values of the weights in a solution. 
- crossover is the process of combining the information from two solutions to create a new 

one.  
These processes are designed to mimic the natural process of evolution and are used to improve the 
quality of the solutions over time. The genetic algorithm is run iteratively, with each iteration 
producing a new population of solutions, and the process continues until a satisfactory solution is 
found, or a predefined stopping criterion is met. The final solution is the set of weights for the graph 
edges that produce the best microstands according to the cost function mentioned above. Outputs 
of the microstand delineation algorithm are shown in Figure 6. 



 
Figure 6 Microstand delineation example for three forest tracts. The red polygons represent the microstand 

borders, and the white (empty) areas within the forest tracts occur where the canopy height model heights are 
< 1 m. The statistics show the forest tract (ha), the average microstand areas (ha) and their variation coefficient 

(CV%), and the resulted number of microstands. 

2.2 Assessing the imputation approaches. 
 
Due to their relative simplicity and the ability to handle multivariate in-situ observations, the nearest 
neighbor imputations have become a popular predictive approach in support to operational forest 
planning (Eskelson et al 2009, Söderberg et al 2017, Söderberg et al 2018, Söderberg et al 2021). The 
current approach to forest recovery predictions adopted by Swedish forest companies is the k-Most 
Similar Neighbor (kMSN) imputations (Moeur & Stage 1995, Packalén & Maltamo 2007), with the 
number of neighbors set to k=5, as suggested by Söderberg et al. (2021). The predictions on target 
observations were obtained as simple averages of the k-closest ground-truth observations from the 
reference dataset. The computations were performed using the R-package ‘yaImpute’ (Crookston & 
Finley 2007). The k-MSN imputations were run at microstand level, and the results were aggregated 
at stand level as weighted averages, with the weights proportional to the areas of the target 
microstands. The main output of the kMSN is a tree lists describing the expected forest structure in a 
given forest tract that can be used for optimizing the operational planning and logistics. 
 
The kMSN algorithm was assessed against other popular multivariate methods that can be used for 
product recovery predictions, namely Partial Least Squares regression (PLSR) and Multivariate 
Random Forests regression (MRFR). Both PLSR and MRFR are popular machine learning methods that 
are well understood, robust to noise and can handle a large numbers of correlated predictors. 
 PLSR and MRFR cannot directly predict the tree lists required for yield and product recovery 
calculations, but instead they can predict multiple forest stand attributes simultaneously. Thus, a 
two-steps procedure was employed, where first 11 forest microstand-level attributes (total and 
species specific volumes, mean height and diameter, total stem number, skewness and kurtosis of 
the height and diameter distribution of the trees) were predicted using PLSR and MRFR, and then 
simple nearest neighbor imputations was used to find the 5 closest Euclidean distance. The PLSR 
computations were performed using the implementation available in the ‘pls’-package (Mevik & 
Meinshausen 2007), and MRFR was run using the ‘randomForestSRC’-package (Ishwaran & Kogalur 
2007, Ishwaran et al 2008, Ishwaran & Kogalur 2022) of the R statistical software (R Core Team 2022) 
  



 

 

 
Figure 7 Imputation errors (for total volume, error index and total monetary value) by auxiliary subsets 

averaged over all prediction methods. The subset no.8 consisting of microstand-level ALS-based predictors in 
combination with hot-encoded NMD majority classes and species-specific volume SLU estimates from 2015 was 

deemed as a feasible trade-off between accuracy, computation efficiency and data requirements. 

 

  



An example for the prediction accuracy for multivariate k-MSN imputations using the most feasible 

subset of predictors (i.e., subset #8) is presented in Figure 8.  

 

 
Figure 8 The accuracy for the main forest state attributes in terms of mean absolute error (mae) and mean error 

(me) in percentage relative to the ground-truth values compiled from harvester production files. The example 
pertains to a random validation dataset produced during the data splitting procedure. 

  



Table 2 Prediction accuracy in terms of percentage mean absolute error for total and species specific volume 
and monetary loss at forest tract level. The numbers in parentheses represent the spreading (i.e., standard 
deviations in percentage points) of the error estimates during the simulation studies.      

Auxiliary     
Subset 

Method 

Errors (%) 

Volume 
Stem 

number 
Mean 
height 

Mean   
 DBH 

Monetary loss 

Total Pine Spruce Deciduous Total Pine Spruce Deciduous 

ALS                   
NMD                   
SLU                        
(#8) 

k-MSN 
9.19 27.77 9.64 42.54 14.62 4.15 6.25 25.94 53.07 27.48 64.64 

4.82 9.77 5.59 13.89 6.42 4.66 5.79 1.95 6.61 3.16 9.21 

PLSR 
9.93 32.01 10.63 46.47 14.79 4.23 6.21 27.14 53.25 29.43 63.00 

  6.33 8.47 4.74 7.3 6.63 5.64 5.88 2.53 5.02 2.99 5.72 

MRFR 
10.96 35.40 12.68 52.86 17.14 4.84 7.08 30.43 59.76 32.95 70.44 

5.55 8.38 5.09 9.56 6.65 4.70 5.89 2.81 6.61 3.14 7.16 

 
 

2.4 Diameter distribution predictions 
 
The DBH distributions were quantized in 2 cm classes, with the mid-class values between 6 to 60 cm. 

The prediction quality is quantified using the Error Index (EI) described in Packalén & Maltamo (2008) 

as: 

𝐸𝐼 = ∑ 0.5 |
𝑛̂𝑖

𝑁̂
−

𝑛𝑖

𝑁
|𝑖∈𝑆𝑘

, 𝐸𝐼 ∈ [0,1]  

where 𝑁 and 𝑁̂ are the ground-truth and imputed total number of trees in a forest tract, and 𝑛𝑖  and 

𝑛̂𝑖 are the ground-truth and total number of trees in the ith DBH class. EI = 0 for perfect distribution 

match, and EI = 1 when the imputed and true distributions are completely different.  

The overall errors in distribution imputations at forest tract level Figure xxx (a) are in general much 

below (ca. 0.13) the lowest reported values in literature (ca. 0.15-0.20). The species- specific EI values 

are in general much higher, being in general between 0.4-0.6 (Table 4) According to our knowledge, 

reference error index values for species specific diameter distribution predictions are not available in 

the literature.  

An example of very good fit for the overall and species-specific diameter distribution predictions at 

forest tract level according to the EI values is shown in Figure 9, and an average result is presented in 

Figure 10. 

 
 

 
  



Table 3 Average error indexes describing the imputation accuracy for DBH distributions. The numbers in 
parentheses represent the spreading (i.e., standard deviations in percentage points) of the error estimates 
during the simulation studies. 

Auxiliary  
subset  

Method 
Error index  

Total Pine Spruce Deciduous 

ALS                   
NMD                   
SLU                        
(#8) 

k-MSN 
0.137 0.465 0.162 0.347 

2.665 6.131 5.641 2.984 

PLSR 
0.143 0.464 0.178 0.348 

2.744 5.435 7.189 2.09 

MRFR 
0.165 0.502 0.202 0.388 

3.112 5.9 7.724 3.181 

 

 

 
Figure 9 Overall and species-specific diameter distribution predictions at forest tract level considered to be of 

high quality. The ground-truth distributions are grey color, and the imputed distribution are in red.  

 

 



 
Figure 10 Overall and species-specific diameter distribution predictions at forest tract level considered to be of 
average quality. The ground-truth distributions are grey color, and the imputed distribution are in red. 

 

2.5 Uncertainty assessment for k-MSN imputations 
The uncertainty assessment focused solely on the total and species-specific volume imputations 
aggregated at forest tract level. The approach combines the prediction interval construction 
algorithm via split conformal inference described in Lei et al. (2018, § 2.4) with the quantile random 
forest regression algorithm implemented in the ‘randomForestSRC’- package (Greenwald & Khanna 

2001, Meinshausen 2006) of the R statistical software (R Core Team 2022). The general numerical 
simulation methodology follows Zhang et al (2020). The four coverage probability types 
characterizing the prediction intervals described in Zhang et al (2020, §3) are the following: 
 

• 𝑇𝑦𝑝𝑒 1: ℙ[𝑌 ∈ Ι𝛼(𝑿, ∁𝑛)] (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 
• 𝑇𝑦𝑝𝑒 2: ℙ[𝑌 ∈ Ι𝛼(𝑿, ∁𝑛)|∁𝑛] (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑖𝑣𝑒𝑛 ∁𝑛) 
• 𝑇𝑦𝑝𝑒 3: ℙ[𝑌 ∈ Ι𝛼(𝑿, ∁𝑛)|𝑿 = 𝑥] (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑖𝑣𝑒𝑛 𝑿 = 𝑥) 
• 𝑇𝑦𝑝𝑒 4: ℙ[𝑌 ∈ Ι𝛼(𝑿, ∁𝑛)|∁𝑛, 𝑿 = 𝑥] (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑖𝑣𝑒𝑛 𝑿 = 𝑥 𝑎𝑛𝑑 ∁𝑛) 

 
where Ι𝛼 is the 1 − 𝛼 prediction interval, Y is the ground truth value of a certain forest attribute, and 
∁𝑛 is the calibration dataset containing n independent observations (i.e., forest tracts) and X is the 
set of predictors (i.e., predicted volumes) used for controlling the heteroscedastic errors. The naive 
predictions intervals were constructed at Student-t intervals using the root mean square error of the 
fitted residuals, for each of the estimated forest tract attributes. The nominal coverage probabilities 
of 0.50, 0.68, 0.75, 0.90 and 0.95 were considered for the assessment. The performance of both 
inferential methods is presented in Figure 11. The results indicate that the conformal inference 
approach produced coverage rate estimates that are very close to the nominal levels, with the 
conditional coverage types being in general more efficient. 
 



 

 
Figure 11 Empirical versus nominal prediction interval coverages. Type 1 and 2 coverage rate estimates resulted 

from conformal predictions are shown in Figure 11 a, and the results for types 3 and 4 in Figure 11 b.  The 
corresponding coverage rate estimates using naive are shown in Figure 11 c and d, respectively. The boxplots 

indicate the coverage rates, and the conditional coverage rate estimates are represented by the red dots.    

 
 
  



Table 4 Empirical coverage rates (type 1 and 2) for conformal and naive prediction intervals. The number in 
italics indicate the spreading (percentage points standard deviation) during the simulation studies. 

Method Property Attribute 

100(1-α) Prediction intervals 

50 68 75 90 95 

Types 1 and 2 coverage rates 

Naive 
inference 
(RMSE) 

Coverage 

Total 
0.65 0.79 0.83 0.92 0.95 

5.13 2.52 3.07 1.70 1.26 

Pine 
0.74 0.84 0.87 0.93 0.95 

4.24 3.64 2.36 2.03 1.27 

Spruce 
0.66 0.80 0.84 0.92 0.95 

4.25 3.03 2.72 1.63 1.76 

Deciduous 
0.74 0.84 0.87 0.93 0.95 

3.22 3.43 2.63 1.75 1.53 

Median  
width  

Total 13.34 19.67 22.75 32.53 38.76 

Pine 85.10 116.41 129.60 168.55 192.10 

Spruce 13.96 20.58 23.81 34.05 40.57 

Deciduous 104.32 140.61 155.95 200.88 228.47 

Conformal  
Inference 

Coverage 

Total 
0.50 0.69 0.76 0.90 0.95 

7.91 6.71 5.31 2.48 2.20 

Pine 
0.51 0.69 0.76 0.90 0.95 

8.82 5.43 5.36 2.77 1.51 

Spruce 
0.51 0.69 0.76 0.90 0.95 

8.66 5.86 4.94 2.89 2.05 

Deciduous 
0.49 0.67 0.74 0.89 0.94 

9.05 6.21 5.34 2.74 2.39 

Median 
 width  

Total 8.63 13.31 15.95 24.05 30.28 

Pine 50.11 67.19 74.88 96.71 114.02 

Spruce 9.37 14.40 16.86 25.24 31.49 

Deciduous 58.08 82.07 91.33 121.06 144.55 

  



Table 5 Empirical coverage rates (type 1 and 2) for conformal and naive prediction intervals. The number in 
italics indicate the spreading (percentage points standard deviation) during the simulation studies. 

Method Property Attribute 

100(1-α) Prediction intervals 

50 68 75 90 95 

Types 3-4 coverage rates 

Naive 
inference 

(RMSE) 

Coverage 

Total 
0.66 0.79 0.84 0.92 0.95 

4.89 2.77 2.14 1.67 1.29 

Pine 
0.74 0.84 0.87 0.93 0.95 

3.12 3.43 2.52 1.80 1.66 

Spruce 
0.67 0.80 0.84 0.92 0.95 

4.55 2.53 2.86 2.12 1.52 

Deciduous 
0.74 0.84 0.87 0.93 0.95 

4.09 2.72 1.92 1.58 1.95 

Median 
width  

Total 13.51 19.91 23.03 32.93 39.24 

Pine 84.44 115.62 128.51 167.48 191.31 

Spruce 14.03 20.69 23.93 34.22 40.78 

Deciduous 104.04 139.39 154.80 199.80 227.16 

Conformal  
Inference 

Coverage 

Total 
0.49 0.67 0.74 0.89 0.94 

5.74 2.29 3.38 1.46 1.35 

Pine 
0.51 0.69 0.75 0.90 0.94 

5.13 4.04 2.24 2.13 1.03 

Spruce 
0.50 0.68 0.75 0.89 0.95 

5.23 3.83 3.94 1.84 1.37 

Deciduous 
0.50 0.68 0.75 0.90 0.95 

3.83 4.07 3.22 2.28 1.26 

Median 
width  

Total 8.68 13.31 15.71 24.00 30.27 

Pine 52.50 70.10 77.99 100.61 116.30 

Spruce 9.40 14.31 16.75 25.08 31.26 

Deciduous 58.97 83.09 93.36 123.56 147.28 

  



Conditional prediction intervals (type 4) for total volume and species specific volumes are presented 

in Figures 12- 15. The black dots represent the predicted versus ground-truth forest tract volumes, 

and the vertical black lines are the associated conformal prediction intervals with nominal coverage 

error of 68%. The 1:1 line between ground-truth and predicted total volumes level is shown in red. 

The prediction intervals are valid if they are crossing the 1.1 line. The left-side panels show the 

resulted prediction intervals for all the forest tracts in the independent validation dataset. Zoomed 

views of the rectangular regions marked with dark gray is provided in the right-panels.  

 

 
Figure 12 Conformal prediction intervals for total volumes  

 

 

 
Figure 13 Conformal prediction intervals for total Pine sp. volumes 

 



 
Figure 14 Conformal prediction intervals for total Spruce volumes 

 

 

 
Figure 15 Conformal prediction intervals for total Deciduous sp. volumes 
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